Densities, Refractive Indices, and Excess Molar Volumes of Water + Methanol + Hexyl Acetate and Its Binary Submixtures at 298.15 K

Alberto Arce," Antonio Blanco, José C. Pérez, and Ana Soto
Department of Chemical Engineering, University of Santiago de Compostela, Santiago de Compostela, Spain

Abstract

Densities and refractive indices were measured throughout the miscible region for water + methanol + hexyl acetate, water + methanol, and hexyl acetate + methanol at 298.15 K and atmospheric pressure. Derived excess volumes were correlated using Redlich-Kister polynomials.

Introduction

We report densities, refractive indices, and excess volumes in the miscible region for water + methanol + hexyl acetate at 298.15 K and atmospheric pressure. In spite of the potential of hexyl acetate as a solvent for recovery of methanol from aqueous dilute solutions, no measurements of this ternary mixture have appeared in the open literature. The measured excess volumes have been correlated using Redlich-Kister polynomials.

Experimental Section

Materials. Reagent grade water was obtained with a Milli-Q Plus system. Methanol (from Merck) was >99.7 mass $\%$ pure, and hexyl acetate (from Aldrich) >99.1 mass $\%$ pure. Since small concentrations of impurities have no influence on the properties studied (in particular, they do not affect excess volume results) (1, 2), both compounds were used without further purification. Table 1 lists the densities and refractive indices of all three components together with values found in the literature (3).

Apparatus. Mixtures were prepared by mass using a Mettler AE 240 balance with a precision of $\pm 0.00001 \mathrm{~g}$. Densities were measured to a precision of $\pm 0.00001 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ in an Anton Paar DMA 60 digital vibrating tube densimeter with a DMA 602 measuring cell, and refractive indices to a precision of ± 0.0001 in an Atago RX-1000 refractometer. Temperature was kept at $25.00 \pm 0.02{ }^{\circ} \mathrm{C}$ with a Heto Therm ultrathermostat.

Results and Discussion

The molar volumes V of mixtures were calculated as usual from the expression

$$
\begin{equation*}
V=\sum x_{i} M_{i} / d \tag{1}
\end{equation*}
$$

where x_{i} is the mole fraction of component i in the mixture, M_{i} its molecular weight, and d the measured density of the mixture, and excess molar volumes $V^{\mathbb{E}}$ from

$$
\begin{equation*}
V^{£}=V-\sum x_{i} V_{i} \tag{2}
\end{equation*}
$$

where V_{i} is the molar volume of pure component i. Molar refractions R were calculated using the Lorentz-Lorenz equation:

$$
\begin{equation*}
R=V\left(n_{\mathrm{D}}^{2}-1\right) /\left(n_{\mathrm{D}}^{2}+2\right) \tag{3}
\end{equation*}
$$

where n_{D} is the refractive index of the mixture and ΔR the deviation of R from a mole fraction average of the molar

* To whom corresponding should be addressed.

Table 1. Densities (d) and Refractive Indices (n_{D}) of Pure Components at 298.15 K

	$d /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$			n_{D}	
component	exptl	lit. (3)		exptl	lit. (3)
water	0.9970	0.99704		1.3324	1.33250
methanol	0.7866	0.78664		1.3264	1.32652
hexyl acetate	0.8686	0.8681		1.4069	
				1.4092^{a}	1.4096^{a}

${ }^{a}$ At 293.15 K .

Figure 1. Density isolines for water (1) + methanol (2) + hexyl acetate (3) at 298.15 K and atmospheric pressure.
refraction of the pure components, from

$$
\begin{equation*}
\Delta R=R-\sum x_{i} R_{i} \tag{4}
\end{equation*}
$$

where R_{i} is the molar refraction of pure component i.
Table 2 lists the measured values of d and n_{D} together with the corresponding values of $V^{\mathbb{E}}$ and ΔR (results are included both for mixtures with all three components present and for the binary subsystems water + methanol and hexyl acetate + methanol). Figures 1 and 2 show isolines for d and n_{D} in the miscible region of the ternary system, together with the binodal curve established in previous work (4). Figure 3 shows the dependence of V^{E} on the mole fractions of water and hexyl acetate, and Figure 4 the corresponding V isolines (computed using a standard program). Figure 5 compares our $V^{\mathbb{E}}$ results for water + methanol with previously published data (6-9).

Table 2. Densities d, Refractive Indices n_{D}, Excess Volumes $V \mathbb{E}$, and ΔR Values for Water (1) + Methanol (2) + Hexyl Acetate (3) at 298.15 K

x_{1}	x_{2}	$d /\left(\mathrm{g} \cdot \mathrm{cm}^{-8}\right)$	n_{D}	$V^{\mathbf{E}}\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$\Delta R /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	x_{1}	x_{2}	$d /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$n_{\text {D }}$	$V^{\mathbf{L}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$\Delta R /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$
0.0000	1.0000	0.78659	1.3264	0.000	0.000	0.0000	0.0000	0.86859	1.4069	0.000	0.000
0.0716	0.9284	0.79901	1.3288	-0.267	-0.006	0.0476	0.9524	0.79482	1.3281	-0.183	-0.004
0.1203	0.8797	0.80760	1.3303	-0.423	-0.010	0.0426	0.8522	0.81821	1.3537	-0.098	0.010
0.1612	0.8388	0.81496	1.3316	-0.539	-0.013	0.0377	0.7552	0.83244	1.3689	-0.065	0.019
0.2145	0.7855	0.82478	1.3331	-0.672	-0.016	0.0331	0.6627	0.84183	1.3789	-0.054	0.023
0.2609	0.7391	0.83356	1.3344	-0.772	-0.018	0.0283	0.5668	0.84894	1.3863	-0.048	0.025
0.3054	0.6946	0.84219	1.3356	-0.853	-0.020	0.0234	0.4677	0.85446	1.3921	-0.042	0.023
0.3550	0.6450	0.85205	1.3369	-0.927	-0.022	0.0188	0.3771	0.85840	1.3962	-0.036	0.020
0.4096	0.5904	0.86318	1.3382	-0.986	-0.023	0.0150	0.3004	0.86115	1.3991	-0.030	0.016
0.4584	0.5416	0.87333	1.3392	-1.018	-0.024	0.0100	0.1998	0.86415	1.4022	-0.024	0.011
0.4943	0.5057	0.88091	1.3398	-1.028	-0.024	0.0055	0.1105	0.86637	1.4045	-0.019	0.006
0.5604	0.4396	0.89503	1.3407	-1.016	-0.023	0.1500	0.8500	0.81295	1.3312	-0.508	-0.012
0.6063	0.3937	0.90493	1.3410	-0.982	-0.023	0.1345	0.7620	0.83009	1.3561	-0.340	-0.001
0.6562	0.3438	0.91573	1.3411	-0.922	-0.021	0.1194	0.6767	0.84073	1.3708	-0.250	0.008
0.7040	0.2960	0.92612	1.3408	-0.842	-0.020	0.1044	0.5919	0.84809	1.3806	-0.196	0.014
0.7484	0.2516	0.93581	1.3403	-0.749	-0.018	0.0894	0.5064	0.85349	1.3876	-0.155	0.015
0.7958	0.2042	0.94625	1.3394	-0.632	-0.015	0.0757	0.4288	0.85722	1.3924	-0.122	0.013
0.8468	0.1532	0.95774	1.3381	-0.487	-0.012	0.0616	0.3488	0.86028	1.3963	-0.092	0.008
0.8984	0.1016	0.96987	1.3364	-0.327	-0.009	0.0457	0.2587	0.86306	1.3998	-0.062	0.000
0.9455	0.0545	0.98173	1.3346	-0.175	-0.005	0.0326	0.1846	0.86498	1.4022	-0.044	-0.005
1.0000	0.0000	0.99706	1.3325	0.000	0.000	0.0185	0.1050	0.86674	1.4044	-0.029	-0.008
0.0000	0.9503	0.80065	1.3405	0.025	0.011	0.2457	0.7543	0.83066	1.3342	-0.741	-0.018
0.0000	0.8992	0.81179	1.3516	0.038	0.019	0.2200	0.6752	0.84180	1.3593	-0.517	-0.003
0.0000	0.8545	0.81965	1.3594	0.043	0.025	0.1949	0.5984	0.84903	1.3735	-0.387	0.007
0.0000	0.8056	0.82677	1.3664	0.041	0.029	0.1714	0.5261	0.85391	1.3824	-0.306	0.013
0.0000	0.7531	0.83312	1.3726	0.036	0.032	0.1486	0.4561	0.85746	1.3886	-0.244	0.015
0.0000	0.7037	0.83814	1.3774	0.028	0.034	0.1236	0.3793	0.86042	1.3936	-0.185	0.015
0.0000	0.6561	0.84229	1.3814	0.019	0.034	0.1012	0.3108	0.86250	1.3971	-0.137	0.013
0.0000	0.6006	0.84644	1.3854	0.009	0.034	0.0755	0.2316	0.86447	1.4004	-0.089	0.010
0.0000	0.5689	0.84853	1.3874	0.003	0.033	0.0529	0.1624	0.86592	1.4027	-0.055	0.006
0.0000	0.4970	0.85267	1.3914	-0.007	0.031	0.0318	0.0977	0.86711	1.4045	-0.032	0.003
0.0000	0.4466	0.85516	1.3938	-0.013	0.029	0.3430	0.6570	0.84964	1.3366	-0.911	-0.021
0.0000	0.3952	0.85740	1.3960	-0.017	0.026	0.3269	0.6261	0.85119	1.3499	-0.764	-0.014
0.0000	0.3447	0.85937	1.3979	-0.020	0.023	0.3102	0.5943	0.85328	1.3601	-0.663	-0.007
0.0000	0.2869	0.86137	1.3998	-0.021	0.020	0.2935	0.5622	0.85532	1.3680	-0.589	-0.001
0.0000	0.2473	0.86261	1.4010	-0.020	0.018	0.2765	0.5296	0.85706	1.3743	-0.524	0.004
0.0000	0.2008	0.86395	1.4023	-0.019	0.015	0.3923	0.6077	0.85962	1.3377	-0.970	-0.023
0.0000	0.1503	0.86528	1.4036	-0.016	0.011	0.3797	0.5882	0.85896	1.3472	-0.856	-0.019
0.0000	0.1080	0.86630	1.4046	-0.013	0.009	0.3677	0.5697	0.85922	1.3547	-0.782	-0.016
0.0000	0.0492	0.86760	1.4059	-0.007	0.004	0.3548	0.5497	0.85970	1.3612	-0.715	-0.012

Table 3. Coefficients and Standard Deviations of the Excess Volume-composition curves fitted to the data for the binary systems

system	$A_{0} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$A_{1} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$A_{2} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$A_{3} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$\sigma /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$
water + methanol	-4.1148	-0.1325	0.5078	0.6222	0.001
hexyl acetate + methanol	-0.0277	-0.2629	0.2721	0.001	

Table 4. Coefficients and Standard Deviations of the $\Delta \boldsymbol{R}$-Composition Curves Fitted to the Data for the Binary Systems

system	$A_{0} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$A_{1} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$A_{2} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$\sigma /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$
water + methanol	-0.0952			0.001
hexyl acetate + methanol	0.1239	-0.0768	0.0403	0.001

Table 5. Coefficients and Standard Deviations of the Excess Volume-Composition and ΔR-Composition Surfaces Fitted to the Data for the Ternary System

property	$\begin{gathered} A / \\ \left(\mathrm{cm}^{3}\right. \\ \left.\mathrm{ol}^{-1}\right) \end{gathered}$	$\begin{gathered} B_{1} / \\ \left(\mathrm{cm}^{3}\right. \\ \left.\mathrm{mol}^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} B_{2} / \\ \left(\mathrm{cm}^{3}\right. \\ \left.\mathrm{mol}^{-1}\right) \end{gathered}$	$B_{3} /$ (cm^{3}. mol^{-1})	$\begin{gathered} C_{1} / \\ \left(\mathrm{cm}^{3}\right. \\ \left.\mathrm{mol}^{-1}\right) \\ \hline \end{gathered}$	C_{2} (cm^{3}. mol^{-1})	C_{3} (cm ${ }^{3}$. mol^{-1})	$\begin{gathered} D_{1} / \\ \left(\mathrm{cm}^{3}\right. \\ \left.\mathrm{mol}^{-1}\right) \end{gathered}$	D_{2} (cm^{3}. mol^{-1})	D_{3} (cm ${ }^{3}$. mol^{-1})	
$V^{\text {E }}$	-3.0216	-15.0761	-9.7954	5.2807	-37.1854	4.0476	14.2640	-16.3716	-0.5216	-15.4910	0.002
ΔR	0.5350	-0.1104	0.8601	0.9705	-3.4206	1.9575	-7.0600				0.002

The V^{E} and ΔR data were correlated using Redlich-Kister polynomials for ternary systems (5):

$$
\begin{aligned}
& Q_{123}=Q_{12}+Q_{32}+Q_{13}+x_{1} x_{2} x_{3}\left\{A+B_{1}\left(x_{1}-x_{2}\right)+\right. \\
& B_{2}\left(x_{3}-x_{2}\right)+B_{3}\left(x_{3}-x_{1}\right)+C_{1}\left(x_{1}-x_{2}\right)^{2}+C_{2}\left(x_{3}-x_{2}\right)^{2}+ \\
& \left.C_{3}\left(x_{3}-x_{1}\right)^{2}+\ldots\right\}
\end{aligned}
$$

where Q_{123} is the dependent quantity (here V^{E} or ΔR), x_{i} is the mole fraction of component i in the ternary mixture, $Q_{i j}$ is the Redlich-Kister polynomial fitted to the data for binary mixtures of components i and j, and A, B_{i}, C_{i}, etc. are the
coefficients to be optimized. The optimized coefficients and standard deviations of the binary polynomials

$$
\begin{equation*}
Q_{i j}=x_{i} x_{j} \sum_{k} A_{k}\left(x_{i}-x_{j}\right)^{k} \quad k=0,1,2, \ldots, n \tag{6}
\end{equation*}
$$

are listed in Tables 3 and 4 for $Q=V V^{\mathrm{E}}$ and $Q=\Delta R$, respectively (Q_{31} is taken to be identically zero, since water and hexyl acetate are practically immiscible), and those of the ternary polynomials in Table 5. All polynomials were fitted by least squares, using Student's t test to estimate the significance of

Figure 2. Refractive index isolines for water (1) + methanol (2) + hexyl acetate (3) mixtures at 298.15 K and atmospheric pressure.

Figure 3. Composition dependence of the excess molar volume of water (1) + methanol (2) + hexyl acetate (3) mixtures at 298.15 K and atmospheric pressure.
each coefficient and Fisher's F test to decide on the inclusion of further terms.

Conclusions

The excess molar volumes of the ternary system water + methanol + hexyl acetate at 298.15 K and atmospheric pressure are negative, except for mixtures with a mole fraction of hexyl acetate of up to about 0.45 at or very near the methanol + hexyl acetate edge of the composition diagram. The total range of V^{E} is -1.028 to $+0.043 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} . \Delta R$ values range from -0.024 to +0.034 ; i.e., the refractive index of these mixtures exhibits almost ideal behavior.

Figure 4. Excess molar volume isolines for the water (1) + methanol (2) + hexyl acetate (3) at 298.15 K and atmospheric pressure.

Figure 5. V^{E} of water + methanol: ($(\stackrel{)}{ }$ this work, (Δ) Benson and Kiyohara (6), (0) Letellier and Biquard (7), (ロ) Easteal and Woolf (8), (∇) Patel and Sandler (9).

Literature Cited

(1) Berti, P.; Lepori, L.; Matteoli, E. Fluid Phase Equilib. 1989, 44, 285.
(2) Spanedda, A.; Lepori, L.; Matteoli, E. Fluid Phase Equilib. 1991, 69, 209.
(3) Riddick, J. A.; Bunger, W. B.; Sakano, T. Organic Solvents, 4th ed.; John Wiley: New York, 1986.
(4) Vidal, I. Ph.D. Thesis, University of Santiago, Spain, 1992
(5) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.
(6) Benson, G. C.; Kiyohara, O. J. Solution Chem. 1980, 9, 791.
(7) Letellier, P.; Biquard, M. Can. J. Chem. 1982, 60, 1155.
(8) Easteal, A. J.; Woolf, L. J. Chem. Thermodyn. 1985, 17, 69.
(9) Patel, N. C.; Sandler, S. I. J. Chem. Eng. Data 1985, 30, 218.

Received for review March 30, 1993. Revised August 13, 1993. Accepted September 1, $1993 .{ }^{\circ}$

- Abstract published in Advance ACS Abstracts, November 15, 1993.

